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Abstract

In the following text, for finite discrete X with at least two elements, nonempty countable Γ,
and ϕ : Γ → Γ we prove the generalized shift dynamical system (XΓ, σϕ) is densely chaotic if
and only if ϕ : Γ → Γ does not have any (quasi–)periodic point. Hence the class of all densely
chaotic generalized shifts onXΓ is intermediate between the class of all Devaney chaotic gener-
alized shifts on XΓ and the class of all Li–Yorke chaotic generalized shifts on XΓ. In addition,
these inclusions are proper for infinite countableΓ. Moreoverweprove (XΓ, σϕ) is Li–Yorke sen-
sitive (resp. sensitive, strongly sensitive, asymptotic sensitive, syndetically sensitive, cofinitely
sensitive, multi–sensitive, ergodically sensitive, spatiotemporally chaotic, Li–Yorke chaotic) if
and only if ϕ : Γ→ Γ has at least one non–quasi–periodic point.
Keywords: asymptotic sensitive; densely chaotic; Li-Yorke sensitive; spatiotemporally chaotic;

strongly sensitive; generalized shift.
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1 Introduction

One of the first concepts is introduced in the intermediate mathematical level, is the concept
of a self-map ϕ : Γ → Γ. We recall that a point a ∈ Γ is a periodic point of ϕ : Γ → Γ if there
exists n ≥ 1 with ϕn(a) = a and it is a quasi–periodic point of ϕ : Γ → Γ if there exist n > m ≥ 1
with ϕn(a) = ϕm(a). We denote the collection of all periodic (resp. non–quasi–periodic) points
of ϕ : Γ→ Γ with Per(ϕ) (resp. W (ϕ)).

Onemay findwith an elementary approach that themap ϕ : Γ→ Γ does not have any periodic
point if and only ifW (ϕ) = Γ (note that if α ∈ Γ\W (ϕ), then it is a quasi–periodic point and there
exist n > m ≥ 1 with ϕm(α) = ϕn(α) by ϕn−m(ϕm(α)) = ϕn(α) we have ϕn−m(ϕm(α)) = ϕm(α)
then ϕm(α) ∈ Per(ϕ), and Per(ϕ) 6= ∅).

Now for nonempty set Γ and ϕ : Γ→ Γ we have the following diagram:

ϕ is one to one and Per(ϕ) = ∅ +3 W (ϕ) = Γ +3 W (ϕ) 6= ∅.

For “suitable” generalized shift dynamical system (XΓ, σϕ) which we deal in this paper, the first
statement in the above diagram “ϕ is one to one and Per(ϕ) = ∅” is equivalent to “(XΓ, σϕ) is
Devaney chaotic” [18, Theorem2.13] and the last statement “W (ϕ) 6= ∅” is equivalent to “(XΓ, σϕ)
is Li-Yorke chaotic” [17, Theorem 3.3]. We return to this diagram in Section 4 and show that
the second statement “W (ϕ) = Γ” is equivalent to “(XΓ, σϕ) is densely chaotic”, moreover the
implications of the diagram are not reversible for infinite Γ.

Moreover “sensitive to initial conditions” or sometimes known as “butterfly effect” may is the
first concept in sensitivity approach for a large group of the mathematicians (see [3]). However,
regarding different dynamical points of view nowadays we can find various types of sensitiv-
ity, old ones and new ones in metric dynamical systems like mean sensitive, Li–Yorke sensitivity,
strongly sensitive, ergodically sensitive, multi–sensitive, cofinitely sensitive ... (see e.g., [5, 7, 8, 9,
14, 21]), or even in general dynamical systems [4].

In last section of this text, a collection of different types of sensitivities in the category of com-
pact metric generalized shift dynamical systems are compared.

In this text byN, wemeant the set of positive integers {1, 2, . . .}. Also for finite setA, |A|denotes
the cardinality of A.

What is a Generalized Shift?

By a dynamical system (or briefly system) (Z, f) we mean a topological space Z and continuous
map f : Z → Z. One of the most famous dynamical systems is one-sided shift dynamical system
σ : {1, . . . , k}N → {1, . . . , k}N with σ((xn)n∈N) = (xn+1)n∈N (for (xn)n∈N ∈ {1, . . . , k}N). Study-
ing dynamical and non-dynamical properties of one-sided shift has been considered by several
authors, however the reader may find interesting ideas in [12] too.

For nonempty arbitrary setX with at least two elements and nonempty setΓ, we call σϕ : XΓ →
XΓ with σϕ((xα)α∈Γ) = (xϕ(α))α∈Γ (for (xα)α∈Γ ∈ XΓ) a generalized shift (generalizing of an idea
or concept is common in mathematics (see [6] and [10] as examples)). If X has a topological
structure andXΓ equippedwith product (pointwise convergence) topology, then it is evident that
σϕ : XΓ → XΓ is continuous, so wemay consider the dynamical system (XΓ, σϕ). MoreoverXΓ is
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a compact metrizable space if and only ifX is compact metrizable and Γ is countable. Generalized
shift has been introduced for the first time in [16], which has been followed by studying several
properties of generalized shifts like, topological entropy [15], Devaney chaos [18] and Li-Yorke
chaos [17, 13].

2 Preliminaries in Dynamical Systems

In the dynamical system (Z, f) with compact metric phase space (Z, d), we say x, y ∈ Z are
scrambled or (x, y) is a scrambled pair of (Z, f) if

lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > 0 .

We denote the collection of all scarmbled pairs of (Z, f) with S((Z, d), f) or briefly S(Z, f). We
call a subset A of Z with at least two elements an scrambled set if every distinct pairs of elements
of A is an scrambled pair, i.e., A×A ⊆ S(Z, f) ∪∆Z , where ∆Z = {(z, z) : z ∈ Z}. Also for ε > 0
denote {(x, y) ∈ S(Z, f) : lim sup

n→∞
d(fn(x), fn(y)) > ε} by Sε((Z, d), f) or briefly Sε(Z, f).

Note 2.1. Suppose d and d′ are two compatible metrics on compact metrizable space Z, then for
every ε > 0 exists δ > 0 such that

∀x, y ∈ Z (d′(x, y) < δ ⇒ d(x, y) < ε).

Now suppose ε, δ > 0 satisfy the above statement, f : Z → Z is continuous, and (x, y) ∈
Sε((Z, d), f), then lim inf

n→∞
d(fn(x), fn(y)) = 0 thus there exists subsequence {d(fnk(x), fnk(y))}k≥1

such that
lim
k→∞

d(fnk(x), fnk(y)) = lim inf
n→∞

d(fn(x), fn(y)) = 0 .

Since Z × Z is a compact metrizable space, there exists subsequence
{(fnkl (x), fnkl (y))}l≥1 of {(fnk(x), fnk(y))}k≥1 converging to a point of Z × Z like (z, w), hence
d(z, w) = lim

l→∞
d(fnkl (x), fnkl (y)) = lim

k→∞
d(fnk(x), fnk(y)) = 0 and z = w, therefore

lim
l→∞

d′(fnkl (x), fnkl (y)) = d′(z, w) = 0, and

lim inf
n→∞

d′(fn(x), fn(y)) = 0 .

Moreover, lim sup
n→∞

d(fn(x), fn(y)) > ε, hence there exists subsequence {d(fmt(x), fmt(y))}t≥1

such that
lim
t→∞

d(fmt(x), fmt(y)) = lim sup
n→∞

d(fn(x), fn(y)) > ε .

Again, since Z × Z is a compact metrizable space, there exists subsequence
{(fmtl (x), fmtl (y))}l≥1 of {(fmt(x), fmt(y))}t≥1 converging to a point of Z × Z like (u, v), hence
d(u, v) = lim

l→∞
d(fmtl (x), fmtl (y)) = lim sup

n→∞
d(fn(x), fn(y)) > ε therefore d′(u, v) ≥ δ. Thus

lim sup
n→∞

d′(fn(x), fn(y)) ≥ lim
l→∞

d′(fmtl (x), fmtl (y)) = d′(u, v) ≥ δ > δ/2 ,

which shows (x, y) ∈ Sδ/2((Z, d′), f) So we have, Sε((Z, d), f) ⊆ Sδ/2((Z, d′), f).

By using the above argument we have:
∀ε > 0 ∃µ > 0 (Sε((Z, d), f) ⊆ Sµ((Z, d′), f))
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and S((Z, d), f) = S((Z, d′), f), i.e. the definition of an scrambled pair is independent of chosen
compatible metric on Z (for more details see [17]).

We recall that for ε > 0 the dynamical system (Z, f), with compact metric phase space (Z, d),
is:

• Li-Yorke chaotic, if Z has an uncountable scrambled subset;
• Li-Yorke sensitive, if there exists κ > 0 such that for every x ∈ Z and open neighbourhood U

of x there exists y ∈ U with (x, y) ∈ Sκ(Z, f) [7];
• densely ε−chaotic, if Sε(Z, f) is a dense subset of Z × Z [11];
• spatiotemporally chaotic, if for every x ∈ Z and open neighbourhood U of x there exists y ∈ U

such that x, y are scrambled [20];
• densely chaotic, if S(Z, f) is a dense subset of Z × Z [11];
• topological transitive, if for all opene (nonempty and open) subsetsU, V ofZ there exists n ≥ 1

with U ∩ fn(V ) 6= ∅ [2];
• Devaney chaotic, if it is topological transitive,Per(f) is dense inZ (i.e., (Z, f) has dense periodic

points), and it is sensitive dependence to initial conditions (by [1] sensitivity dependence to
initial conditions is redundant).

Convention 2.2. : In the following text suppose X is a finite discrete space with at least two ele-
ments, Γ is a nonempty countable set, and ϕ : Γ→ Γ is a self-map.
Suppose Γ = {β1, β2, . . .} equip XΓ with metric:

D((xα)α∈Γ, (yα)α∈Γ) =
∑
n≥1

δ(xβn , yβn)

2n
((xα)α∈Γ, (yα)α∈Γ ∈ XΓ)

where
δ(a, b) =

{
0 a = b ,
1 a 6= b .

Then D is a compatible metric with product topology of XΓ.

3 Densely Chaotic Generalized Shift Dynamical Systems

In this section we prove that the system (XΓ, σϕ) is densely chaotic if and only if ϕ : Γ → Γ
does not have any periodic point, i.e. W (ϕ) = Γ.
Lemma 3.1. If ϕ : Γ→ Γ does not have any periodic point, then for all finite nonempty subsets A,B of Γ,
{n ∈ Z : ϕn(A) ∩B 6= ∅} has at most card(A)card(B) elements and it is finite.

Proof. Since ϕ : Γ→ Γ does not have any periodic point, it does not have any quasi–periodic point
too. We prove for α, β ∈ Γ, K = {n ∈ Z : β ∈ ϕn({α})} is void or singleton. Otherwise there
exists distinct n,m ∈ K. Suppose n < m, we have the following cases:

• 0 ≤ n < m. In this case ϕn+1(α) = ϕ(β) = ϕm+1(α) and α is a quasi–periodic point of ϕ.
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• n < 0 ≤ m. In this case ϕ−n(β) = α and β = ϕm(α) which leads to ϕ−n+m+1(α) =
ϕ−n+1(β) = ϕ(α) and α is a quasi–periodic point of ϕ.

• n < m < 0. In this case ϕ−n(β) = α = ϕ−m(β) and β is a quasi–periodic point of ϕ.

By using the above cases ϕ : Γ→ Γ has a quasi–periodic point, which is a contradiction. Hence
K has at most one element, which leads to the fact that

{n ∈ Z : ϕn(A) ∩B 6= ∅} =
⋃
{{n ∈ Z : β ∈ ϕn({α})} : (α, β) ∈ A×B},

has at most card(A)card(B) elements.
Lemma 3.2. Suppose ϕ : Γ → Γ does not have any periodic point, ((xα)α∈Γ, (yα)α∈Γ) ∈ S(XΓ, σϕ),
((zα)α∈Γ, (wα)α∈Γ) ∈ XΓ ×XΓ and there exist ψ1, . . . , ψn ∈ Γ such that for all α ∈ Γ \ {ψ1, . . . , ψn}
we have both xα = zα and yα = wα. Then ((zα)α∈Γ, (wα)α∈Γ) ∈ S(XΓ, σϕ) and:

lim sup
t→∞

D(σtϕ((xα)α∈Γ), σtϕ((yα)α∈Γ)) = lim sup
t→∞

D(σtϕ((zα)α∈Γ), σtϕ((wα)α∈Γ)) .

Proof. Given ε > 0 there exists N ≥ 1 with
∑
i≥N

1

2i
< ε

2 . Using Lemma 3.1 there existsK ≥ 1 with

ϕt({β1, . . . , βN}) ∩ {ψ1, . . . , ψn} = ∅ for all t ≥ K.

Thus xϕt(βi) = zϕt(βi) and yϕt(βi) = wϕt(βi) for all 1 ≤ i ≤ N and t ≥ K. Hence for all t ≥ K we
have:∣∣D(σtϕ((xα)α∈Γ), σtϕ((yα)α∈Γ))−D(σtϕ((zα)α∈Γ), σtϕ((wα)α∈Γ))

∣∣
=

∣∣∣∣∣∣
∑
i≥1

δ(xϕt(βi), yϕt(βi))

2i
−
∑
i≥1

δ(zϕt(βi), wϕt(βi))

2i

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

1≤i≤N

(
δ(xϕt(βi), yϕt(βi))− δ(zϕt(βi), wϕt(βi))

2i

)∣∣∣∣∣∣+∣∣∣∣∣∑
i>N

(
δ(xϕt(βi), yϕt(βi))− δ(zϕt(βi), wϕt(βi))

2i

)∣∣∣∣∣
=

∣∣∣∣∣∣
∑

1≤i≤N

(
δ(xϕt(βi), yϕt(βi))− δ(xϕt(βi), yϕt(βi))

2i

)∣∣∣∣∣∣+∣∣∣∣∣∑
i>N

(
δ(xϕt(βi), yϕt(βi))− δ(zϕt(βi), wϕt(βi))

2i

)∣∣∣∣∣
=

∣∣∣∣∣∑
i>N

(
δ(xϕt(βi), yϕt(βi))− δ(zϕt(βi), wϕt(βi))

2i

)∣∣∣∣∣
≤
∑
i>N

(
δ(xϕt(βi), yϕt(βi)) + δ(zϕt(βi), wϕt(βi))

2i

)
≤
∑
i>N

2

2i
< ε .
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Using ∣∣D(σtϕ((xα)α∈Γ), σtϕ((yα)α∈Γ))−D(σtϕ((zα)α∈Γ), σtϕ((wα)α∈Γ))
∣∣ < ε (∀t ≥ K) ,

we have: ∣∣∣∣lim sup
t→∞

D(σtϕ((xα)α∈Γ), σtϕ((yα)α∈Γ))− lim sup
t→∞

D(σtϕ((zα)α∈Γ), σtϕ((wα)α∈Γ))

∣∣∣∣ ≤ ε ,
and ∣∣∣lim inf

t→∞
D(σtϕ((xα)α∈Γ), σtϕ((yα)α∈Γ))− lim inf

t→∞
D(σtϕ((zα)α∈Γ), σtϕ((wα)α∈Γ))

∣∣∣ ≤ ε .
Note to the fact that ε > 0 is arbitrary, we have:

lim sup
t→∞

D(σtϕ((xα)α∈Γ), σtϕ((yα)α∈Γ)) = lim sup
t→∞

D(σtϕ((zα)α∈Γ), σtϕ((wα)α∈Γ)) ,

and
lim inf
t→∞

D(σtϕ((xα)α∈Γ), σtϕ((yα)α∈Γ)) = lim inf
t→∞

D(σtϕ((zα)α∈Γ), σtϕ((wα)α∈Γ)) ,

which lead to the desired result.

The following remark deal with the situation W (ϕ) 6= ∅, and its connection to Li–Yorke and
topological chaoticity of (XΓ, σϕ). Let’s recall that the system (Z, f) is topologically chaotic if it has
positive topological entropy (for the definition of topological entropy and more details see [19]).
Remark 3.1. By [15, Theorem 4.7], topological entropy of σϕ : XΓ → XΓ is equal to o(ϕ) log |X|, where:

o(ϕ) = sup({0} ∪ {n ∈ N : there exist α1, . . . , αn ∈ Γ such that {ϕm(α1)}m≥1, . . . , {ϕm(αn)}m≥1

are infinite and pairwise disjoint }).

Hence (XΓ, σϕ) is topological chaotic if and only if o(ϕ) > 0, i.e., ϕ : Γ → Γ has at least one non-quasi–
periodic point. So by [17, Theorem 3.3] the system (XΓ, σϕ) is Li-Yorke chaotic (resp. has an scrambled
pair) if and only if the map ϕ : Γ → Γ has at least one non–quasi–periodic point which is equivalent to
topological chaoticity of (XΓ, σϕ) in its turn.

Lemma 3.3. If ϕ : Γ→ Γ does not have any periodic point, then there exists µ > 0 such that:

∀x ∈ XΓ ∃y ∈ XΓ ((x, y) ∈ S(XΓ, σϕ) ∧ lim sup
t→∞

D(σtϕ(x), σtϕ(y)) = µ) .

Proof. Since ϕ : Γ→ Γ does not have any periodic point, it does not have any quasi–periodic point
too, and all of points ofΓ are non–quasi–periodic, hence byRemark 3.1 there exists ((pα)α∈Γ, (qα)α∈Γ) ∈
S(XΓ, σϕ), let:

µ := lim sup
t→∞

D(σtϕ((pα)α∈Γ), σtϕ((qα)α∈Γ)) .

Consider (xα)α∈Γ ∈ XΓ and choose (yα)α∈Γ ∈ XΓ such that:

yα

{
= xα pα = qα ,
∈ {pα, qα} \ {xα} pα 6= qα .

Hence xα = yα if and only if pα = qα, therefore

δ(xα, yα) = δ(pα, qα) (∀α ∈ Γ) .
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For all t ≥ 1 we have:

D(σtϕ((xα)α∈Γ), σtϕ((yα)α∈Γ)) =
∑
i≥1

δ(xϕt(βi), yϕt(βi))

2i
=
∑
i≥1

δ(pϕt(βi), qϕt(βi))

2i

= D(σtϕ((pα)α∈Γ), σtϕ((qα)α∈Γ))

which leads to
lim inf
t→∞

D(σtϕ((xα)α∈Γ), σtϕ((yα)α∈Γ)) = lim inf
t→∞

D(σtϕ((pα)α∈Γ), σtϕ((qα)α∈Γ)) = 0 ,

lim sup
t→∞

D(σtϕ((xα)α∈Γ), σtϕ((yα)α∈Γ)) = lim sup
t→∞

D(σtϕ((pα)α∈Γ), σtϕ((qα)α∈Γ)) = µ > 0 ,

and ((xα)α∈Γ, (yα)α∈Γ) ∈ S(XΓ, σϕ).

Now we have the following lemma.
Lemma 3.4. If (XΓ, σϕ) is densely chaotic, thenW (ϕ) = Γ (i.e., ϕ : Γ → Γ does not have any periodic
point).

Proof. Consider β ∈ Per(ϕ) and n ≥ 1 with ϕn(β) = β, we prove (XΓ, σϕ) is not densely chaotic.
We may also suppose β1 = β, β2 = ϕ(β), . . . , βn = ϕn−1(β). Choose distinct p, q ∈ X and let:

Uα =

{
{p} α = β1, . . . , βn ,
X otherwise ,

Vα =

{
{q} α = β1, . . . , βn ,
X otherwise ,

also let:
U =

∏
α∈Γ

Uα , V =
∏
α∈Γ

Vα ,

then U ×V is an opene subset ofXΓ×XΓ. Consider (x, y) = ((xα)α∈Γ, (yα)α∈Γ) ∈ U ×V we have
xβ1 = · · · = xβn = p and yβ1 = · · · = yβn = q. For all k ≥ 1 we have ϕk(β) ∈ {β1, . . . , βn} which
leads to xϕk(β) = p and yϕk(β) = q, thus:

D(σkϕ((xα)α∈Γ, (yα)α∈Γ)) = D((xϕk(α))α∈Γ, (yϕk(α))α∈Γ)

≥ 1

2
δ(xϕk(β), yϕk(β)) =

1

2
δ(p, q) =

1

2
.

Hence
lim inf
k→∞

D(σkϕ((xα)α∈Γ, (yα)α∈Γ)) ≥ 1

2

and (x, y) /∈ S(XΓ, σϕ). Using (U × V ) ∩ S(XΓ, σϕ) = ∅ we have the desired result.

Now we are ready to characterize densely chaotic generalized shifts.
Theorem 3.1 (Densely chaotic generalized shifts). For finite discrete X with at least two elements,
nonempty countable set Γ and ϕ : Γ→ Γ, the following statements are equivalent:

1. for some ε > 0, (XΓ, σϕ) is densely ε−chaotic;

2. the system (XΓ, σϕ) is densely chaotic;

3. the map ϕ : Γ→ Γ does not have any periodic point (i.e.,W (ϕ) = Γ).
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Proof. Clearly (1) implies (2). By Lemma 3.4, (2) implies (3).
(3⇒ 1): SupposeW (ϕ) = Γ by Lemma 3.3 there exists µ > 0 such that for all x = (xα)α∈Γ ∈ XΓ,
there exists y = (yα)α∈Γ ∈ XΓ with ((xα)α∈Γ, (yα)α∈Γ) ∈ S(XΓ, σϕ) and

lim sup
t→∞

D(σtϕ((xα)α∈Γ), σtϕ((yα)α∈Γ)) = µ .

SupposeW is an opene subset ofXΓ×XΓ, there exist opene subsets U, V ofXΓ with U ×V ⊆W .
Choose u = (uα)α∈Γ ∈ U, v = (vα)α∈Γ ∈ V and ψ1, . . . , ψn ∈ Γ such that

∏
α∈Γ

Uα ⊆ U,
∏
α∈Γ

Vα ⊆ V

with
Uα =

{
{uα} α = ψ1, . . . , ψn ,
X otherwise ,

and Vα =

{
{vα} α = ψ1, . . . , ψn ,
X otherwise .

Then for:

zα =

{
uα α = ψ1, . . . , ψn ,
xα otherwise ,

and wα =

{
vα α = ψ1, . . . , ψn ,
yα otherwise .

By Lemma 3.2, we have (z, w) := ((zα)α∈Γ, (wα)α∈Γ) ∈ S(XΓ, σϕ) with

lim sup
t→∞

D(σtϕ(z), σtϕ(w)) = lim sup
t→∞

D(σtϕ(x), σtϕ(y)) = µ .

Thus, (z, w) ∈ (U×V )∩Sµ
2
(XΓ, σϕ) andW∩Sµ

2
(XΓ, σϕ) 6= ∅ for each opene subsetW ofXΓ×XΓ.

Therefore, (XΓ, σϕ) is µ
2−densely chaotic.

4 Sensitivity in Generalized Shift Dynamical Systems

We recall that the dynamical system (Z, f) with compact metric phase space (Z, d) is [14]:

• sensitive if there exists ε > 0 such that for all x ∈ Z and open neighbourhood V of x there
exist n ≥ 0 and y ∈ V with d(fn(x), fn(y)) > ε;

• strongly sensitive, if there exists ε > 0 such that for all x ∈ Z and open neighbourhood V of x
there exist n0 ≥ 0 and y ∈ V with d(fn(x), fn(y)) > ε for all n ≥ n0.

As it has been mentioned in [7, Theorem 3], (Z, f) is sensitive if and only if there exists ε > 0
such that {(x, y) ∈ Z ×Z : lim sup

n→∞
d(fn(x), fn(y)) > ε} is dense in Z ×Z. Using a similar method

described in Note 2.1 being sensitive (resp. strongly sensitive) does not depend on compatible
metric on Z. Now we are ready to prove that the system (XΓ, σϕ) is sensitive (resp. strongly
sensitive) if and only if it is Li-Yorke chaotic, i.e. W (ϕ) 6= ∅.
Theorem 4.1. IfW (ϕ) 6= ∅, then (XΓ, σϕ) is strongly sensitive.

Proof. SupposeW (ϕ) 6= ∅ and choose θ ∈ W (ϕ), we may suppose θ = βk (see Convention 2.2).
If U is an open neighbourhood of x = (xα)α∈Γ ∈ XΓ, there exists finite subset F of Γ such that for
{(yα)α∈Γ ∈ XΓ : ∀α ∈ F yα = xα} ⊆ U . Since {ϕn(θ)}n≥1 is a one to one sequence, there exists
N ≥ 1 such that for all n ≥ N we have ϕn(θ) /∈ F , i.e. {ϕn(θ) : n ≥ N} ⊆ Γ \ F . So

{(yα)α∈Γ ∈ XΓ : ∀α 6= ϕN (θ), ϕN+1(θ), ϕN+2(θ), . . . , yα = xα} ⊆ U .
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For allm ≥ N , choose pm ∈ X \ {xϕm(θ)}, also let

zα =

{
pm α = ϕm(θ),m ≥ N ,
xα otherwise .

Then (zα)α∈Γ ∈ U and form ≥ N , (uα)α∈Γ := σmϕ ((zα)α∈Γ), (vα)α∈Γ := σmϕ ((xα)α∈Γ) we have

D(σmϕ ((xα)α∈Γ), σmϕ ((zα)α∈Γ)) = D((vα)α∈Γ, (uα)α∈Γ)

≥ δ(vθ, uθ)

2k
=
δ(xϕm(θ), zϕm(θ))

2k

=
δ(xϕm(θ), pm)

2k
=

1

2k
.

Hence, (XΓ, σϕ) is strongly sensitive.
Theorem 4.2. IfW (ϕ) = ∅, then (XΓ, σϕ) is not sensitive.

Proof. SupposeW (ϕ) = ∅ and consider arbitrary ε > 0, then there existsN ≥ 1 such that 1

2N
< ε.

SinceW (ϕ) = ∅, for all α ∈ Γ the set {ϕn(α) : n ≥ 0} is finite. Thus

Λ := {ϕn(βi) : i ∈ {1, . . . , N}, n ≥ 0}

is finite too, for x = (xα)α∈Γ ∈ XΓ, U = {(yα)α∈Γ ∈ XΓ : ∀α ∈ Λ (yα = xα)} is an open
neighbourhood of (xα)α∈Γ ∈ XΓ. For n ≥ 0 and (yα)α∈Γ ∈ U let (vα)α∈Γ := σnϕ((xα)α∈Γ) and
(wα)α∈Γ := σnϕ((yα)α∈Γ), then for all α ∈ Λ we have ϕn(α) ∈ Λ and vα = xϕn(α) = yϕn(α) = wα,
thus

D(σnϕ((xα)α∈Γ), σnϕ((yα)α∈Γ)) =
∑

i≥1,βi /∈Λ

δ(vβi , wβi)

2i
≤
∑
i>N

1

2i
=

1

2N
< ε .

So for all ε > 0 and x ∈ XΓ there exists open neighbourhood U of x such thatD(σnϕ(x), σnϕ(y)) < ε
for all y ∈ U and n ≥ 0, which leads to the desired result.

By using Lemmas 3.3 and 3.2, we have the following theorem.
Theorem 4.3. If ϕ : Γ→ Γ does not have any periodic point, then (XΓ, σϕ) is Li-Yorke sensitive.

Proof. Suppose ϕ : Γ→ Γ does not have any periodic point then by Lemma 3.3 there exists µ > 0
such that for all a ∈ XΓ, there exists ba ∈ XΓ with

(a, ba) ∈ S(XΓ, σϕ) ∧ lim sup
t→∞

D(σtϕ(a), σtϕ(ba)) = µ .

Consider x = (xα)α∈Γ ∈ XΓ, and bx =: y = (yα)α∈Γ. For all n ≥ 1 define yn = (ynα)α∈Γ with:

ynα =

{
xα α ∈ {β1, . . . , βn} ,
yα otherwise .

Using Lemma 3.2 for all n ≥ 1 we have lim sup
t→∞

D(σtϕ(x), σtϕ(yn)) = lim sup
t→∞

D(σtϕ(x), σtϕ(bx)) = µ

and lim inf
t→∞

D(σtϕ(x), σtϕ(yn)) = lim inf
t→∞

D(σtϕ(x), σtϕ(bx)) = 0, in particular (x, yn) ∈ Sµ
2
(XΓ, σϕ).

Moreover by lim
n→∞

yn = x for all open neighbourhood U of x there exists n ∈ Nwith yn ∈ U which
completes the proof.
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Theorem 4.4. The generalized shift dynamical system (XΓ, σϕ) is Li–Yorke sensitive if and only if ϕ :
Γ→ Γ has at least one non–quasi–periodic point.

Proof. If (XΓ, σϕ) is Li–Yorke sensitive, then S(XΓ, σϕ) 6= ∅ and by Remark 3.1 ϕ has a non–quasi–
periodic point.

On the other hand, if ϕ has a non–quasi–periodic point θ ∈ Γ, then for Λ =
⋃
{ϕn(θ) : n ∈ Z},

ϕ �Λ: Λ→ Λ does not have any periodic point and by Theorem 4.3 (XΛ, σϕ�Λ
) is Li–Yorke sensitive.

We may suppose Λ = {βs1 , βs2 , . . .}with s1 < s2 < · · · , consider p ∈ X and equipXΛ with metric
DΛ(x, y) = D(x∗, y∗), where for x = (xα)α∈Λ ∈ XΛ we have x∗α = xα for α ∈ Λ, x∗α = p for α /∈ Λ,
and x∗ = (x∗α)α∈Γ.

Since (XΛ, σϕ�Λ
) is Li–Yorke sensitive there exists κ > 0 such that for all x ∈ XΛ and ε > 0 there

exists y ∈ XΛ with DΛ(x, y) < ε and (x, y) ∈ Sκ(XΛ, σϕ�Λ
).

Consider z = (zα)α∈Γ ∈ XΓ and open neighbourhood V0 of z. There exists r > 0 with V := {a ∈
XΓ : D(a, z) < r} ⊆ V0, Natural projection map pΛ : XΓ → XΛ

(xα)α∈Γ 7→(xα)α∈Λ

is open and continuous
hence there exists ε > 0 such that

{a ∈ XΛ : DΛ(pΛ(z), a) < ε} ⊆ pΛ(V ) ,

so there exists w ∈ {a ∈ XΛ : DΛ(pΛ(z), a) < ε} and y ∈ V with pΛ(y) = w and (pΛ(z), w) ∈
Sκ(XΛ, σϕ�Λ

), i.e. (pΛ(z), pΛ(y)) ∈ Sκ(XΛ, σϕ�Λ
). For h = (hα)α∈Λ let:

hα :=

{
hα α ∈ Λ ,
zα otherwise ,

and h = (hα)α∈Γ. For t ≥ 0 we haveD(σtϕ(z), σtϕ(pΛ(y)) = DΛ(σtϕ�Λ
(pΛ(z)), σtϕ�Λ

(pΛ(y)), therefore
(z, pΛ(y)) ∈ Sκ(XΓ, σϕ). By D(z, pΛ(y)) ≤ D(z, y) < r we have pΛ(y) ∈ V ⊆ V0 and obtain the
desired result.

Then, by using Theorems 4.1, 4.2 and 4.4 we have the following theorem:
Theorem 4.5 (sensitive generalized shifts). The following statements are equivalent:

1. (XΓ, σϕ) is strongly sensitive;

2. (XΓ, σϕ) is sensitive;

3. (XΓ, σϕ) is Li–Yorke sensitive;

4. ϕ : Γ→ Γ has at least one non–quasi–periodic point.

Proof. It’s clear that (1) implies (2). By Theorem 4.2, (2) implies (4). By Theorem 4.1, (4) implies
(1). By Theorem 4.4, (3) and (4) are equivalent.

4.1 Two Diagrams

By [18, Theorem 2.13], the system (XΓ, σϕ) is Devaney chaotic (resp. topological transitive) if
and only if ϕ : Γ→ Γ is one to one without periodic points.
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Now we are ready to summarize Sections 3 and 4 in the following diagram, which completes
the mentioned diagram in the Introduction:

ϕ is one to one and Per(ϕ) = ∅ +3
KS

��

W (ϕ) = Γ +3
KS

��

W (ϕ) 6= ∅
KS

��
(XΓ, σϕ) is Devaney chaotic (XΓ, σϕ) is densely chaotic (XΓ, σϕ) is Li−Yorke chaotic

Let:

C := {(XΓ, ση) : η ∈ ΓΓ},

CDevaney := {(XΓ, ση) ∈ C : (XΓ, ση) is Devaney chaotic},

CDensely := {(XΓ, ση) ∈ C : (XΓ, ση) is Densely chaotic},

CLY := {(XΓ, ση) ∈ C : (XΓ, ση) is Li–Yorke chaotic}.

For infinite Γ, suppose βns are distinct, then we have the following diagram:

C
CLY
CDensely
CDevaney

E1
E2
E3
E4

Where “Ei” denotes Example (XΓ, σϕi) for ϕi : Γ→ Γ with:

• ϕ1(βn) = β2n for n ≥ 1,
• ϕ2(β1) = ϕ2(β2) = β3, and ϕ2(βn) = β2n for n ≥ 3,
• ϕ3(β1) = ϕ3(β2) = β2, and ϕ3(βn) = β2n for n ≥ 3,
• ϕ4(β1) = β1, and ϕ4(βn) = βn−1 for n ≥ 2.

4.2 On More Types of Sensitivity

This subsection considers dynamical system (Z, f) with compact metric phase space (Z, d).
Note 4.6. According to [14], the dynamical system (Z, f) is asymptotic sensitive if there exists ε >
0 such that for all x ∈ Z and open neighbourhood V of x there exists y ∈ V with
lim sup
n→∞

d(fn(x), fn(y)) > ε. Let’s verify the following diagram:

strongly sensitive⇒ asymptotic sensitive⇒ sensitive.
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Note that if (Z, f) is strongly sensitive, then there exists κ > 0 such that for all x ∈ Z and open
neighbourhood V of x there exist n0 ≥ 0 and y ∈ V with d(fn(x), fn(y)) > κ for all n ≥ n0, hence
lim sup
n→∞

d(fn(x), fn(y)) = lim sup
n→∞
n≥n0

d(fn(x), fn(y)) ≥ κ > κ
2 =: µ, thus (Z, f) is asymptotic sensitive.

Moreover if (Z, f) is asymptotic sensitive, then there exists µ > 0 such that for all x ∈ Z and
open neighbourhood V of x there exists y ∈ V with lim sup

n→∞
d(fn(x), fn(y)) > µ, thus {n ≥ 1 :

d(fn(x), fn(y)) > µ} is infinite and in particular it is nonempty. Hence (Z, f) is sensitive.

For ε > 0 and open subset V of Z let N(V, ε) := {n ≥ 0 : ∃x, y ∈ V (d(fn(x), fn(y)) > ε)} and
we call A ⊆ N ∪ {0} syndetic if there exists N ≥ 1 with {i, i+ 1, . . . , i+N} ∩A 6= ∅ for all i ≥ 1.
Note 4.7. (Z, f) is sensitive if and only if there exists κ > 0 such that for all opene subset V of Z,
N(V, κ) 6= ∅.

First suppose (Z, f) is sensitive, then there exists ε > 0 such that for all x ∈ X and open
neighbourhood V of x there exists y ∈ V and n ≥ 0 with d(fn(x), fn(y)) > ε. For opene subset
W of Z choose z1 ∈ W , then there exists z2 ∈ W and m ≥ 0 with d(fm(z1), fm(z2)) > ε, thus
m ∈ N(W, ε) and N(W, ε) 6= ∅ for all opene subsetW of Z.

Now suppose there exists µ > 0 such that N(V, κ) 6= ∅ for all opene subset V of Z. For all
x ∈ Z and open neighbouhhood V of x we have N(V, κ) 6= ∅ thus there exist y, z ∈ V and n ≥ 0
with d(fn(z), fn(y)) > κ, therefore d(fn(x), fn(y)) > κ

2 or d(fn(x), fn(z)) > κ
2 . Thus (Z, f) is

sensitive.
Note 4.8. According to [8] we call (Z, f) syndetically sensitive (resp. cofinitely sensitive) if there
exists ε > 0 such that for all opene subset V of Z, N(V, ε) is syndetic (resp. cofinite). Let’s verify
the following diagram:

strongly sensitive⇒ cofinitely sensitive⇒ syndetically sensitive⇒ sensitive.

Note that if (Z, f) is strongly sensitive, then there exists κ > 0 such that for all x ∈ Z and open
neighbourhood V of x there exist n0 ≥ 0 and y ∈ V with d(fn(x), fn(y)) > κ for all n ≥ n0. Thus
for opene W of Z choose z ∈ W , there exist m ≥ 0 and y ∈ W with d(fn(z), fn(y)) > κ for all
n ≥ m, thus {m,m+ 1, . . .} ⊆ {n ≥ 0 : ∃p, q ∈ W (d(fn(p), fn(q)) > κ)} = N(W,κ) and N(W,κ)
is cofinite, Hence (Z, f) is cofinitely sensitive.

Since any cofinite subset of N∪{0} is syndetic, if (Z, f) is cofinitely sensitive, then it is syndeti-
cally sensitive. Since any syndetic subset of N∪{0} is nonempty, if (Z, f) is syndetically sensitive,
then it is sensitive (use Note 4.7).
Note 4.9. Regarding [8] we call (Z, f) multi–sensitive if there exists ε > 0 such that for all k ≥ 1 and
opene subsets V1, . . . , Vk of Z, we have

⋂
1≤n≤k

N(Vn, ε) 6= ∅. Let’s verify the following diagram:

strongly sensitive⇒multi-sensitive⇒ sensitive.

Note that if (Z, f) is strongly sensitive, then there exists κ > 0 such that for all x ∈ Z and open
neighbourhood V of x there exist n0 ≥ 0 and y ∈ V with d(fn(x), fn(y)) > κ for all n ≥ n0.
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Suppose V1 . . . , Vk are opene subsets of Z, for each i choose xi ∈ Vi, then there exists ni ≥ 0
and yi ∈ Vi with d(fn(xi), f

n(yi)) > κ for all n ≥ ni. Thus for m = max(n1, · · · , nk) we have
{m,m+ 1, . . .} ⊆

⋂
1≤i≤k

N(Vi, κ), in particular
⋂

1≤i≤k

N(Vi, κ) 6= ∅ and (Z, f)is multi–sensitive.

By Note 4.7, if (Z, f) is multi–sensitive, then it is sensitive.
Lemma 4.1. If (Z, f) is cofinitely sensitive, then there exists ε > 0 such that

lim
n→∞

|N(V, ε) ∩ {0, . . . , n}|
n+ 1

= 1

for all opene V subset of Z.

Proof. Since (Z, f) is cofinitely sensitive there exists ε > 0 such that for all opene subset V of Z,
N(V, ε) is cofinite. Hence for opene subset V of Z there exists m ≥ 1 such that {m,m + 1, . . .} ⊆
N(V, ε), thus for all n ≥ mwe have

n−m+ 1

n+ 1
=
|{m,m+ 1, . . . n} ∩ {0, . . . , n}|

n+ 1
≤ |N(V, ε) ∩ {0, . . . , n}|

n+ 1
≤ 1

which leads to lim
n→∞

|N(V, ε) ∩ {0, . . . , n}|
n+ 1

= 1 and completes the proof.

Note 4.10. We call (Z, f) ergodically sensitive [8] if there exists ε > 0 such that for all opene subset
V of Z, lim sup

n→∞

|N(V, ε) ∩ {0, . . . , n}|
n+ 1

> 0. By Notes 4.8, 4.7 and Lemma 4.1 it is easy to see that we
have the following diagram:

strongly sensitive⇒ cofinitely sensitive⇒ ergodically sensitive⇒ sensitive.
Theorem 4.11. For finite discreteX with at least two elements, nonempty countable set Γ and ϕ : Γ→ Γ
the following statements are equivalent:

1. the system (XΓ, σϕ) is Li-Yorke chaotic (i.e. (XΓ, σϕ) has an scrambled pair by [17, Theorem 3.3]);

2. the system (XΓ, σϕ) is topological chaotic;

3. the system (XΓ, σϕ) is spatiotemporally chaotic;

4. the system (XΓ, σϕ) is sensitive;

5. the system (XΓ, σϕ) is Li–Yorke sensitive;

6. the system (XΓ, σϕ) is strongly sensitive;

7. the system (XΓ, σϕ) is asymptotic sensitive;

8. the system (XΓ, σϕ) is syndetically sensitive;

9. the system (XΓ, σϕ) is cofinitely sensitive;

10. the system (XΓ, σϕ) is multi-sensitive;

11. the system (XΓ, σϕ) is ergodically sensitive;

595



F. Ayatollah Zadeh Shirazi et al. Malaysian J. Math. Sci. 16(3): 583–597 (2022) 583 - 597

12. the map ϕ : Γ→ Γ has at least non–quasi–periodic point.

Proof. (1), (2), and (12) are equivalent by Remark 3.1.
(4), (5), (6), and (12) are equivalent by Theorem 4.5.
(4), and (7) are equivalent by Theorem 4.5 and Note 4.6.
(4), (8), and (9) are equivalent by Theorem 4.5 and Note 4.8.
(4), and (10) are equivalent by Theorem 4.5 and Note 4.9.
(4), and (11) are equivalent by Theorem 4.5 and Note 4.10.
So (1) and (5) are equivalent.

In order to complete the proof, it’s enough to show (5) imply (3), and (3) imply (1).

(5⇒3): Suppose (XΓ, σϕ) is Li–Yorke sensitive. Then there exists κ > 0 such that for every x ∈ XΓ

and open neighbourhood U of x there exists y ∈ U with (x, y) ∈ Sκ(XΓ, σϕ), since Sκ(XΓ, σϕ) ⊆
S(XΓ, σϕ), we have (x, y) ∈ S(XΓ, σϕ) and x, y are scrambled, hence (XΓ, σϕ) is spatiotemporally
chaotic.

(3⇒1): Suppose (XΓ, σϕ) is spatiotemporally chaotic. Then for every x ∈ XΓ and open neigh-
bourhood U of x there exists y ∈ U such that x, y are scrambled. Choose a ∈ XΓ, then there exists
b ∈ XΓ such that a, b are scrambled and (1) is valid.
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